These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Suppressive effect of bacterial polysaccharides on BAFF system is responsible for their poor immunogenicity.
    Author: Kanswal S, Katsenelson N, Allman W, Uslu K, Blake MS, Akkoyunlu M.
    Journal: J Immunol; 2011 Feb 15; 186(4):2430-43. PubMed ID: 21248261.
    Abstract:
    Capsular polysaccharides of encapsulated bacteria are weakly immunogenic T cell-independent type 2 (TI-2) Ags. Recent findings suggest that BAFF system molecules have a critical role in the development of Ab responses against TI-2 Ags. In this study, we investigated the effect of bacterial polysaccharides on B cell responses to BAFF and a proliferation-inducing ligand (APRIL). We determined that B cells exposed to meningococcal type C polysaccharide (MCPS) or group B Streptococcus serotype V (GBS-V) were unresponsive to BAFF- and APRIL-induced Ig secretion. Moreover, MCPS and GBS-V strongly downregulated transmembrane activator and calcium-modulator and cyclophilin ligand interactor, the BAFF and APRIL receptor that is responsible for Ab development against TI-2 Ags. Interestingly, (4-hydroxy-3-nitrophenyl)acetyl-Ficoll (NP-Ficoll), a prototype TI-2 Ag, did not manifest a suppressive effect on B cells. Paradoxically, whereas GBS-V and MCPS inhibited IFN-γ-induced BAFF production from dendritic cells, NP-Ficoll strongly increased BAFF secretion. TLR 9 agonist CpG deoxyoligonucleotide (ODN) was able to reverse the MCPS-mediated transmembrane activator and calcium-modulator and cyclophilin ligand interactor suppression but could not rescue the Ig secretion in BAFF- or APRIL-stimulated B cells. In support of these in vitro observations, it was observed that CpG ODN could help augment the Ab response against NP in mice immunized with a CpG ODN-containing NP-Ficoll vaccine but exhibited only marginal adjuvant activity for MCPS vaccine. Collectively, these results suggest a mechanism for the weak immunogenicity of bacterial polysaccharides and explain the previously observed differences between bacterial polysaccharide and NP-Ficoll immunogenicity.
    [Abstract] [Full Text] [Related] [New Search]