These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence against a role for a pertussis toxin-sensitive G protein in Ca2+ mobilization in rat parotid acinar cells.
    Author: Ambudkar IS, Horn VJ, Dai YS, Baum BJ.
    Journal: Biochim Biophys Acta; 1990 Dec 10; 1055(3):259-64. PubMed ID: 2124929.
    Abstract:
    Hormone-induced Ca2+ mobilization in rat parotid acinar cells is reportedly mediated via an as yet uncharacterized G protein. We have studied the sensitivity to pertussis toxin (PTx) of this signal transduction mechanism. When rats were treated with Ptx (1.3-1.5 micrograms per animal) for 72 h, a 41 kDa membrane protein was ADP-ribosylated. This PTx treatment regimen, also, resulted in a more than 80% block of the ability of the muscarinic agonist carbachol to inhibit beta-adrenergic receptor-stimulated parotid adenylyl cyclase activity. However, cytosolic Ca2+ levels, in response to either carbachol or AIF-4, were comparable in cells prepared from both untreated or PTx-treated rats, when incubated either in the absence or presence of extracellular Ca2+. Further, both the sensitivity of the Ca2+ response to carbachol and the ability of the agonist-sensitive intracellular Ca2+ stores to be refilled by extracellular Ca2+ were unaffected by PTx treatment. Parotid membranes also contained three low-molecular-weight GTP-binding proteins (25, 22 and 18 kDa) which were unaffected by PTx. These results show that there is only one detectable substrate in parotid membranes for a PTx-catalyzed ADP-ribosylation and that hormone-induced Ca2+ mobilization events in parotid acinar cells are not mediated via PTx-sensitive components.
    [Abstract] [Full Text] [Related] [New Search]