These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Power generation from glucose and nitrobenzene degradation using the microbial fuel cell]. Author: Li J, Liu GL, Zhang RD, Luo Y, Zhang CP, Li MC, Quan XC. Journal: Huan Jing Ke Xue; 2010 Nov; 31(11):2811-7. PubMed ID: 21250470. Abstract: By constructing a dual-chamber microbial fuel cell (MFC), experiments were carried out using an initial glucose concentration of 1 000 mg/L with different nitrobenzene (NB) concentrations (0, 50, 150 and 250 mg/L) as the MFC's fuel. Results showed that with an external resistance of 1 000 omega, the initial glucose concentration of 1 000 mg/L and the initial NB concentrations of 0, 50, 150, 250 mg/L, the operation periods were 55.7, 51.6, 45.9 and 32.2 h, respectively, the maximum voltage outputs were 670, 597, 507, and 489 mV, the maximum volumetric power densities were 28.57, 20.42, 9.29, and 8.47 W/m3, and the electric charges were 65.10, 43.50, 35.48, and 30.32 C. The MFC could use the NB and glucose mixtures as fuel and generated stable electricity outputs. The degradation rates of NB in the MFC in all cases reached up to 100% and COD removals in the MFC were 87% - 98%. However, the electricity generation was negligible when using 250 mg/L NB as the sole fuel. Denaturing gradient gel electrophoresis (DGGE) profiles demonstrated that the presence of NB resulted in changes of the dominant bacterial species on the electrodes.[Abstract] [Full Text] [Related] [New Search]