These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DFT study of chiral-phosphoric-acid-catalyzed enantioselective Friedel-Crafts reaction of indole with nitroalkene: bifunctionality and substituent effect of phosphoric acid. Author: Hirata T, Yamanaka M. Journal: Chem Asian J; 2011 Feb 01; 6(2):510-6. PubMed ID: 21254429. Abstract: The enantioselective Friedel-Crafts reaction of indoles with nitroalkenes proceeds catalytically by means of a chiral-phosphoric-acid catalyst to afford products with high enantioselectivities (up to 91% ee). The use of a 3,3'-SiPh(3)-substituted (R)-binol-derived (binol=1,1'-binaphthyl-2,2'-diol) catalyst and a free indole that bears an N-H moiety is essential to achieving high enantioselectivity as well as high yield. To elucidate the reaction mechanism and the origin of the high enantioselectivity, DFT calculations were carried out. The reaction proceeded through a cyclic transition state formed by the two-point binding of both substrates to the conjugated O-P-O moiety of the catalyst, in which indoles and nitroalkenes could be simultaneously activated by Brønsted acidic (proton) and basic (phosphoryl oxygen) sites, respectively. The enantioselectivity was entirely controlled by the steric effect between the 3,3'-substituent group on the (R)-binol-derived phosphoric acid catalyst and the indole ring. When the sterically demanding SiPh(3) group was used as the 3,3'-substituent group, the energy difference between the most-stable diastereomeric transition states that afforded the S and R products was increased to lead to the high enantioselectivity in agreement with the experimental results.[Abstract] [Full Text] [Related] [New Search]