These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: N-methyl-D-aspartate receptor subunit composition in the rat trigeminal principal nucleus remains constant during postnatal development and following neonatal denervation.
    Author: Lo FS, Zhao S.
    Journal: Neuroscience; 2011 Mar 31; 178():240-9. PubMed ID: 21256193.
    Abstract:
    N-methyl-D-aspartate receptors (NMDARs) play a major role in various forms of developmental and adult synaptic plasticity (Lopez de Armentia M, Sah P (2003) J Neurosci 23:6876-6883). Activity-dependent shifts in NR2 subunits of the NMDARs have been proposed to be the molecular basis of critical period plasticity. Several supporting examples have been reported; however it is not clear whether the relationship between NMDAR subunit changes and neural plasticity are correlative or causal, nor whether such a relationship is universal across all sensory pathways with developmental plasticity. In the present study, we used voltage-clamp recording techniques to investigate whether subunit composition of NMDARs changes during development and after neonatal denervation in the principal sensory nucleus (PrV) of the trigeminal nerve. Relative AMPA receptor contribution to synaptic transmission increased linearly by the second postnatal week in the normal PrV. Denervation by peripheral nerve damage did not alter this process. We took the weighted decay time constant (τw) of NMDAR-mediated EPSCs as an index for NMDAR subunit composition. The τw measurement and Western blot analysis revealed that NMDARs contained both NR2A and NR2B subunits. The NR2A/NR2B ratio did not change during postnatal development or after neonatal denervation. Thus, critical period plasticity-related pattern formation in the PrV does not depend on changes in subunit composition of NMDARs. The mechanism underlying developmental synaptic plasticity in the PrV differs from those in higher trigeminal centers and other brain structures.
    [Abstract] [Full Text] [Related] [New Search]