These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An evolutionary legacy of sex and clonal reproduction in the protistan oyster parasite Perkinsus marinus.
    Author: Thompson PC, Rosenthal BM, Hare MP.
    Journal: Infect Genet Evol; 2011 Apr; 11(3):598-609. PubMed ID: 21256249.
    Abstract:
    Perkinsus marinus, a protozoan parasite of the eastern oyster Crassostrea virginica, causes Dermo disease which limits fecundity and causes high mortality in host populations. The long-term efficacy of management strategies for suppressing this disease in both aquaculture and restoration settings depends on the potential rate of evolutionary response by P. marinus. Sexual reproduction has never been demonstrated in vitro or in previous population genetic studies. We developed high resolution microsatellite markers and amplified alleles directly from infected oyster genomic DNA. Of 336 infected oysters from four populations between Massachusetts and Florida, 129 (48%) appeared to be infected with a single parasite genotype and were subjected to population genetic analyses assuming diploidy. The great diversity of multilocus genotypes observed is incompatible with strictly clonal reproduction. Substantial heterozygote deficits in three populations suggest that sexual reproduction often involves inbreeding. At the same time, significant multilocus linkage disequilibrium occurred in most sampled populations, and several genotypes were sampled repeatedly in each of two populations, indicating that asexual reproduction also occurs in P. marinus populations. Interestingly, where this parasite has recently expanded its range, lower strain diversity, significant heterozygote excess, and highly heterozygous multilocus genotypes suggests clonal propagation of recent recombinants. Taken together, these data suggest that P. marinus employs multiple reproductive modes, and that over the short term, selection acts upon independent parasite lineages rather than upon individual loci in a cohesive, interbreeding population. Nevertheless, high genotypic diversity is the evolutionary legacy of sex in P. marinus. Anthropogenic movement of infected oysters may increase outcrossing opportunities, potentially facilitating rapid evolution of this parasite.
    [Abstract] [Full Text] [Related] [New Search]