These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The cyanelle S10 spc ribosomal protein gene operon from Cyanophora paradoxa. Author: Michalowski CB, Pfanzagl B, Löffelhardt W, Bohnert HJ. Journal: Mol Gen Genet; 1990 Nov; 224(2):222-31. PubMed ID: 2126059. Abstract: In Cyanophora paradoxa photosynthetic organelles termed cyanelles perform the functions of chloroplasts in higher plants, while the structural and biochemical characteristics of the cyanelle are essentially cyanobacterial. Our interest in studying the evolutionary relationship between cyanelles and chloroplasts led us to focus on cyanelle-encoded genes of the translational apparatus, specifically genes equivalent to those of the bacterial S10 and spc operons. The structure of a large ribosomal protein gene cluster from cyanelle DNA was characterized and compared with that from plastids and bacteria. Sequences of the following cyanelle genes encompassing 4.8 kb are reported here: 5'-rpl22-rps3-rpl16-rps17-rpl14-rpl5-rps8-rpl6-rpl18- rps5-3'. Cyanelles contain five more ribosomal protein genes than do higher plant chloroplasts and four more genes than Euglena gracilis plastids in the S10/spc region of this gene cluster. The gene encoding rpl36 is absent, in contrast to the case in other plastid DNAs. These genes, including the previously characterized genes rpl3, rpl2 and rps19, are transcribed as a primary transcript of approximately 7500 nucleotides. The occurrence of transcripts smaller than this presumptive primary transcript suggests that it is processed into defined segments. Transcription terminates 3' of rps5 where a 40 bp hairpin with one mismatch (-42.2 kcal) may be folded. Immediately downstream of rps5 an open reading frame, ORF492, is contained on a separate transcript. A comparison of gene content, operon structure and deduced amino acid sequence of the genes in the S10 and spc operons from different organisms supports the notion that cyanelles are intermediary between known plastids and cyanobacteria.[Abstract] [Full Text] [Related] [New Search]