These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Leaf nutrient contents and photosynthetic physiological characteristics of Ulmus pumila-Robinia pseudocacia mixed forests].
    Author: Qin J, Shangguan ZP.
    Journal: Ying Yong Sheng Tai Xue Bao; 2010 Sep; 21(9):2228-34. PubMed ID: 21265142.
    Abstract:
    A field experiment was conducted to study the leaf N, P, and chlorophyll contents, photosynthetic gas exchange parameters, and chlorophyll fluorescence parameters in pure Ulmus pumila forest, pure Robinia pseudoacacia forest, and U. pumila-R. pseudoacacia mixed forests [1:1 (1B1C), 1:2 (1B2C), and 2:1 (2B1C)] in different growth periods. From May to September, the plant leaf N and P contents in pure and mixed forests all presented a decreasing trend. By the end of growth period, the leaf N content of U. pumila and the P content of R. pseudoacacia in 1B2C were obviously higher than those in pure forests. In the mixed forests, the chlorophyll content of U. pumila was obviously higher than that of R. pseudoacacia, and the chlorophyll content of U. pumila in 1B2C reached the highest in July. The photosynthetic rate (Pn) of U. pumila and R. pseudoacacia in mixed forests was higher than that in pure forests, and the Pn of R. pseudoacacia in 1B2C reached the highest (18.54 micromol x m(-2) x s(-1)) in July. The transpiration rate (Tr) and stomatal conductance (Gs) of R. pseudoacacia in mixed forests were higher than those in pure forests, and the Tr and Gs in mixed forests were in the order of 1B2C>1B1C>2B1C. In September, the quantum yield of PSII electron transport (phi(PS II)) of U. pumila in mixed forests was obviously higher than that in pure forest. The photochemical quenching coefficients (q(P)) of U. pumila and R. pseudoacacia in pure and mixed forests had no significant difference, but the non-photochemical quenching coefficient (NPQ) of the two tree species in 1B2C was significantly lower than that in corresponding pure forests. It was suggested that mixed planting U. pumila and R. pseudoacacia could significantly improve the leaf nutrient contents and photosynthetic capacity of the two tree species, and the optimum mixed ratio of U. pumila and R. pseudoacacia was 1:2.
    [Abstract] [Full Text] [Related] [New Search]