These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Selective attachment of F-actin with controlled length for developing an intelligent nanodevice.
    Author: Wei MY, Leon LJ, Lee Y, Parks D, Carroll L, Famouri P.
    Journal: J Colloid Interface Sci; 2011 Apr 01; 356(1):182-9. PubMed ID: 21269638.
    Abstract:
    Development of the nanodevice that myosin-coated beads "walk" on actin filaments (F-actin) tracks for in vitro nanotransportation was hindered due to the difficulty of assembling large-area well-orientated F-actin tracks on the surface. In this work, we present a selective attachment of F-actin with controlled length on a patterned surface by employing biotinylated capped protein gelsolin as intermediate anchoring bridge. A patterned streptavidin layer was formed via coupling with a biotin layer that photo-actively attached to an amine-functionalized glass surface. The patterned film was found stable and homogenous compared to that obtained by microcontact printing method, according to the profiling with fluorescence microscopy. By a secondary blocking process, non-specific binding of F-actin to the patterned surface through electrostatic adsorption can be resisted. The length variation of F-actin as a function of gelsolin concentration was also investigated, implying that F-actin is appropriately of 2.5 μm in average length once F-actin/gelsolin molar ratio is 4:1. Finally, the selective attachment of F-actin was well characterized with quantifying the number of attached F-actin per unit area in the patterned areas over that in blocked areas. The density of F-actin was estimated at c.a. 2 μm(2) per actin filament molecule so that the distance between one another actin filament is estimated as c.a. 1.41-1.97 μm. The unique properties of F-actin, e.g. well flexibility or electrical conductivity, make it feasible to lay them down and form unidirectional aligned tracks by fluidic flow or electrical field. This may open a possibility for the long-distant movement of myosin-coated beads, offering a novel discipline for the development of micro-biochip in vitro.
    [Abstract] [Full Text] [Related] [New Search]