These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fabrication of nanostructured silicon by metal-assisted etching and its effects on matrix-free laser desorption/ionization mass spectrometry.
    Author: Chen WY, Huang JT, Cheng YC, Chien CC, Tsao CW.
    Journal: Anal Chim Acta; 2011 Feb 21; 687(2):97-104. PubMed ID: 21277411.
    Abstract:
    A matrix-free, high sensitivity, nanostructured silicon surface assisted laser desorption/ionization mass spectrometry (LDI-MS) method fabricated by metal-assisted etching was investigated. Effects of key process parameters, such as etching time, substrate resistance and etchant composition, on the nanostructured silicon formation and its LDI-MS efficiency were studied. The results show that the nanostructured silicon pore depth and size increase with etching time, while MS ion intensity increases with etching time to 300 s then decreases until 600 s for both low resistance (0.001-0.02Ωcm) and high resistance (1-100Ωcm) silicon substrates. The nanostructured silicon surface morphologies were found to directly affect the LDI-MS signal ion intensity. By characterizing the nanostructured silicon surface roughness using atomic force microscopy (AFM) and sample absorption efficiency using fluorescence microscopy, it was further demonstrated that the nanostructured silicon surface roughness was highly correlated to the LDI-MS performance.
    [Abstract] [Full Text] [Related] [New Search]