These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of the nigral output pathways in the inhibitory control of the substantia nigra over generalized non-convulsive seizures in the rat. Author: Depaulis A, Vergnes M, Liu Z, Kempf E, Marescaux C. Journal: Neuroscience; 1990; 39(2):339-49. PubMed ID: 2128373. Abstract: Activation of GABAergic transmission within the substantia nigra has been shown to suppress several forms of generalized seizures in experimental models of epilepsy. More especially, such pharmacological manipulations suppress spontaneous and chemically-induced generalized non-convulsive seizures in the rat. The aim of the present study was to examine the role of the dopaminergic and GABAergic thalamic and collicular nigral outputs in this antiepileptic effect. For this purpose, we examined the effects of output destruction on the antiepileptic effect of intranigral injections of a GABA agonist or pharmacological blockade of the neurotransmission at the nerve terminal level in rats with spontaneous absence seizures. After selective destruction of dopaminergic neurons within the substantia nigra with 6-hydroxydopamine (5 micrograms/side) or hemisection of the ascending nigral output, bilateral intranigral injection of muscimol (2 ng/side) still significantly suppressed generalized non-convulsive seizures. Bilateral lesioning of the ventromedial nucleus of the thalamus did not abolish the antiepileptic effects of intranigral muscimol (2 ng/side) and the GABA antagonist, picrotoxin, when given into this thalamic nucleus (10 ng/side) also failed to induce suppression of spike and wave discharges. The antiepileptic effects of intranigral injection of muscimol (2 ng/side) was reversed by bilateral electrolytic lesions of the superior colliculus. Blockade of the GABAergic transmission at this level with picrotoxin (40 ng/side) significantly suppressed generalized non-convulsive seizures. Finally, excitation of collicular cell bodies with low doses of kainic acid (4 and 8 ng/side) also resulted in a suppression of spike and wave discharges. These results demonstrate that the GABAergic nigrocollicular pathway is critical for the inhibitory control of the substantia nigra over generalized non-convulsive seizures. The data further suggest that antiepileptic effects observed following potentiation of GABAergic transmission in the substantia nigra result from a disinhibition of collicular cell bodies.[Abstract] [Full Text] [Related] [New Search]