These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cerebral oxygen consumption during asphyxia in fetal sheep.
    Author: Field DR, Parer JT, Auslender RA, Cheek DB, Baker W, Johnson J.
    Journal: J Dev Physiol; 1990 Sep; 14(3):131-7. PubMed ID: 2129242.
    Abstract:
    Cerebral blood flow and cerebral arteriovenous oxygen content difference were measured in 17 fetal sheep, and cerebral oxygen uptake was calculated. The measurements were made under control conditions and after profound fetal asphyxia induced of uterine blood flow for up to 90 min. In 14 of the fetal sheep, sequential measurements were made to examine hemodynamic changes and cerebral oxygen consumption at comparable intervals up to 36 min of asphyxia. These fetuses initially had elevated blood pressure and lowered heart rate became hypoxemic, hypercarbic, and acidotic. There was an initial decrease in cerebral oxygen consumption. Sequential measurements, however, showed a relative stability in this decreased oxygenation during 4 to 36 min of asphyxia despite a progressive metabolic acidosis. The cerebral fractional oxygen extraction remained unchanged despite a mean pH of 6.98 at 36 min. The calculated cerebral oxygen uptake during asphyxia in all 17 sheep was grouped according to whether the ascending aortic oxygen content was greater or less than 1.0 mmol/l. In the first group with mean ascending aortic oxygen content of 1.3 mmol/l, blood flow to the brain was increased and cerebral oxygen consumption was 85% of control. In the second group with mean arterial blood oxygen content of 0.8 mmol/l, there was a narrowing of the arteriovenous oxygen content difference, but no further increase in cerebral blood flow. Cerebral oxygen consumption was only 48% of control in this more asphyxiated group. We conclude that the degree of hypoxemia in the second group represents a point where physiologic mechanisms cannot compensate, and may be associated with neuronal damage.
    [Abstract] [Full Text] [Related] [New Search]