These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms.
    Author: Xu J, Zhang L, Gong H, Homola J, Yu Q.
    Journal: Small; 2011 Feb 07; 7(3):371-6. PubMed ID: 21294266.
    Abstract:
    Local electric fields can be tuned dramatically by varying the diameter of quasi-3D gold plasmonic nanostructure arrays, as indicated by 3D finite-difference time-domain calculations. Utilizing quasi-3D arrays that exhibit a maximum electric field intensity (i.e., a "hot" spot) either at the bottom (gold nanodisks) or on the top (gold film patterned with nanoholes), the optimal surface-enhanced Raman scattering (SERS) sensitivity for the detection of small molecules or large microorganisms can be achieved. The precisely fabricated and optimized SERS-active quasi-3D nanostructure arrays make it possible to quantitatively and reproducibly detect chemical and biological species using SERS, leading to a new sensing platform with molecular specificity based on SERS for many important applications.
    [Abstract] [Full Text] [Related] [New Search]