These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calcium dynamics in dendritic spines: a link to structural plasticity.
    Author: Dur-e-Ahmad M, Imran M, Gul A.
    Journal: Math Biosci; 2011 Apr; 230(2):55-66. PubMed ID: 21295598.
    Abstract:
    Calcium signals evoked either by action potential or by synaptic activity play a crucial role for the synaptic plasticity within an individual spine. Because of the small size of spine and the indicators commonly used to measure spine calcium activity, calcium function can be severely disrupted. Therefore, it is very difficult to explain the exact relationship between spine geometry and spine calcium dynamics. Recently, it has been suggested that the medium range of calcium which induces long term potentiation leads to the structural stability stage of spines, while very low or very high amount of calcium leads to the long term depression stage which results in shortening and eventually pruning of spines. Here we propose a physiologically realistic computational model to examine the role of calcium and the mechanisms that govern its regulation in the spine morphology. Calcium enters into spine head through NMDA and AMPA channels and is regulated by internal stores. Contribution of this calcium in the induction of long term potentiation and long term depression is also discussed. Further it has also been predicted that the presence of internal stores depletes the total calcium accumulation in cytosol which is in agreement with the recent experimental and theoretical studies.
    [Abstract] [Full Text] [Related] [New Search]