These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bovine lactoperoxidase - a versatile one- and two-electron catalyst of high structural and thermal stability.
    Author: Banerjee S, Furtmüller PG, Obinger C.
    Journal: Biotechnol J; 2011 Feb; 6(2):231-43. PubMed ID: 21298808.
    Abstract:
    Lactoperoxidase (LPO), a member of the peroxidase-cyclooxygenase superfamily, is found in multiple human exocrine secretions and acts as a first line of defense against invading microorganisms by production of antimicrobial oxidants. Because of its ability to efficiently catalyze one- and two-electron oxidation reactions of inorganic and organic compounds, the heme peroxidase is widely used in food biotechnology, cosmetic industry, and diagnostic kits. In order to probe its structural integrity, conformational, and thermal stability, we have undertaken a comprehensive investigation by using complementary biophysical techniques including UV-Vis, circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry (DSC). The oxidoreductase exhibits a high chemical and thermal stability under oxidizing conditions but is significantly destabilized by addition of DTT. Due to its unique ester bonds between the prosthetic group and the protein as well as six intra-chain disulfides, unfolding of the central compact (-helical core occurs concomitantly with denaturation of the heme cavity. The corresponding enthalpic and entropic contributions to the free enthalpy of unfolding are presented. Together with spectroscopic data they will be discussed with respect to the known structure of bovine LPO and homologous myeloperoxidase as well as to its practical application.
    [Abstract] [Full Text] [Related] [New Search]