These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification and characterization of a copper-binding site in αA-crystallin.
    Author: Raju M, Santhoshkumar P, Henzl TM, Sharma KK.
    Journal: Free Radic Biol Med; 2011 May 15; 50(10):1429-36. PubMed ID: 21300147.
    Abstract:
    Previous studies have shown that both αA- and αB-crystallins bind Cu2+, suppress the formation of Cu2+-mediated active oxygen species, and protect ascorbic acid from oxidation by Cu2+. αA- and αB-crystallins are small heat shock proteins with molecular chaperone activity. In this study we show that the mini-αA-crystallin, a peptide consisting of residues 71-88 of αA-crystallin, prevents copper-induced oxidation of ascorbic acid. Evaluation of binding of copper to mini-αA-crystallin showed that each molecule of mini-αA-crystallin binds one copper molecule. Isothermal titration calorimetry and nanospray mass spectrometry revealed dissociation constants of 10.72 and 9.9 μM, respectively. 1,1'-Bis(4-anilino)naphthalene-5,5'-disulfonic acid interaction with mini-αA-crystallin was reduced after binding of Cu2+, suggesting that the same amino acids interact with these two ligands. Circular dichroism spectrometry showed that copper binding to mini-αA-crystallin peptide affects its secondary structure. Substitution of the His residue in mini-αA-crystallin with Ala abolished the redox-suppression activity of the peptide. During the Cu2+-induced ascorbic acid oxidation assay, a deletion mutant, αAΔ70-77, showed about 75% loss of ascorbic acid protection compared to the wild-type αA-crystallin. This difference indicates that the 70-77 region is the primary Cu2+-binding site(s) in human native full-size αA-crystallin. The role of the chaperone site in Cu2+ binding in native αA-crystallin was confirmed by the significant loss of chaperone activity by the peptide after Cu2+ binding.
    [Abstract] [Full Text] [Related] [New Search]