These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Climbing flight performance and load carrying in lesser dog-faced fruit bats (Cynopterus brachyotis).
    Author: MacAyeal LC, Riskin DK, Swartz SM, Breuer KS.
    Journal: J Exp Biol; 2011 Mar 01; 214(Pt 5):786-93. PubMed ID: 21307065.
    Abstract:
    The metabolic cost of flight increases with mass, so animals that fly tend to exhibit morphological traits that reduce body weight. However, all flying animals must sometimes fly while carrying loads. Load carrying is especially relevant for bats, which experience nightly and seasonal fluctuations in body mass of 40% or more. In this study, we examined how the climbing flight performance of fruit bats (Cynopterus brachyotis; N=4) was affected by added loads. The body weights of animals were experimentally increased by 0, 7, 14 or 21% by means of intra-peritoneal injections of saline solution, and flights were recorded as animals flew upwards in a small enclosure. Using a model based on actuator disk theory, we estimated the mechanical power expended by the bats as they flew and separated that cost into different components, including the estimated costs of hovering, climbing and increasing kinetic energy. We found that even our most heavily loaded bats were capable of upward flight, but as the magnitude of the load increased, flight performance diminished. Although the cost of flight increased with loading, bats did not vary total induced power across loading treatment. This resulted in a diminished vertical velocity and thus shallower climbing angle with increased loads. Among trials there was considerable variation in power production, and those with greater power production tended to exhibit higher wingbeat frequencies and lower wing stroke amplitudes than trials with lower power production. Changes in stroke plane angle, downstroke wingtip velocity and wing extension did not correlate significantly with changes in power output. We thus observed the manner in which bats modulated power output through changes in kinematics and conclude that the bats in our study did not respond to increases in loading with increased power output because their typical kinematics already resulted in sufficient aerodynamic power to accommodate even a 21% increase in body weight.
    [Abstract] [Full Text] [Related] [New Search]