These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of β-catenin in regulating microvascular endothelial cell hyperpermeability. Author: Sawant DA, Tharakan B, Hunter FA, Smythe WR, Childs EW. Journal: J Trauma; 2011 Feb; 70(2):481-7; discussion 487-8. PubMed ID: 21307750. Abstract: BACKGROUND: Paracellular microvascular hyperpermeability occurs mainly because of the disruption of the endothelial adherens junction complex. Vascular endothelial-cadherin that consists of an extracellular and intracellular domain to confer cell-cell contact is linked to the actin cytoskeletal assembly through β-catenin. Our objective was to determine the functional role of β-catenin during paracellular hyperpermeability and to evaluate whether exogenous β-catenin would protect against vascular leak. METHODS: β-Catenin siRNA (2.5 μg/mL) was administered to Sprague-Dawley rats through tail vein. FITC-albumin extravasation of the mesenteric postcapillary venules was evaluated after 48 hours using intravital microscopy. Parallel studies using rat lung microvascular endothelial cell monolayers were transfected with β-catenin siRNA, and hyperpermeability was determined using monolayers after 48 hours. The effectiveness of β-catenin siRNA was tested using immunofluorescence and Western blot. To study the protective effect of β-catenin, rat lung microvascular endothelial cell monolayers were transfected with a β-catenin gene expression construct for 48 hours or a recombinant β-catenin protein (1 μg/mL) for 2 hours, followed by transfection with proapoptotic BAK peptide (5 μg/mL), a known inducer hyperpermeability. RESULTS: β-Catenin siRNA induced a significant increase in vascular hyperpermeability in vivo (p<0.05) and monolayer permeability (in vitro; p<0.05). β-Catenin siRNA significantly altered the adherens junction complex and decreased β-catenin protein levels. β-Catenin gene expression construct or recombinant β-catenin protein attenuated BAK-induced monolayer hyperpermeability significantly (p<0.05). CONCLUSION: Posttranscriptional gene silencing of β-catenin leads to vascular hyperpermeability in vivo and monolayer hyperpermeability in vitro. The enhancement of β-catenin gene expression at the adherens junction or exogenous introduction of β-catenin protein shows protection against vascular hyperpermeability.[Abstract] [Full Text] [Related] [New Search]