These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Epitope motif of an anti-nitrotyrosine antibody specific for tyrosine-nitrated peptides revealed by a combination of affinity approaches and mass spectrometry. Author: Dr Guşanu M, Petre BA, Przybylski M. Journal: J Pept Sci; 2011 Mar; 17(3):184-91. PubMed ID: 21308874. Abstract: Nitration of tyrosine residues has been shown to be an important oxidative modification in proteins and has been suggested to play a role in several diseases such as atherosclerosis, asthma, lung and neurodegenerative diseases. Detection of nitrated proteins has been mainly based on the use of nitrotyrosine-specific antibodies. In contrast, only a small number of nitration sites in proteins have been unequivocally identified by MS. We have used a monoclonal 3-NT-specific antibody, and have synthesized a series of tyrosine-nitrated peptides of prostacyclin synthase (PCS) in which a single specific nitration site at Tyr-430 had been previously identified upon reaction with peroxynitrite17. The determination of antibody-binding affinity and specificity of PCS peptides nitrated at different tyrosine residues (Tyr-430, Tyr-421, Tyr-83) and sequence mutations around the nitration sites provided the identification of an epitope motif containing positively charged amino acids (Lys and/or Arg) N-terminal to the nitration site. The highest affinity to the anti-3NT-antibody was found for the PCS peptide comprising the Tyr-430 nitration site with a K(D) of 60 nM determined for the peptide, PCS(424-436-Tyr-430NO(2) ); in contrast, PCS peptides nitrated at Tyr-421 and Tyr-83 had substantially lower affinity. ELISA, SAW bioaffinity, proteolytic digestion of antibody-bound peptides and affinity-MS analysis revealed highest affinity to the antibody for tyrosine-nitrated peptides that contained positively charged amino acids in the N-terminal sequence to the nitration site. Remarkably, similar N-terminal sequences of tyrosine-nitration sites have been recently identified in nitrated physiological proteins, such as eosinophil peroxidase and eosinophil-cationic protein.[Abstract] [Full Text] [Related] [New Search]