These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Study on the mechanical properties of Cu/LDPE composite IUDs. Author: Tang Y, Xia X, Wang Y, Xie C. Journal: Contraception; 2011 Mar; 83(3):255-62. PubMed ID: 21310288. Abstract: BACKGROUND: The copper/low-density polyethylene composite (Cu/LDPE composite) intrauterine devices (IUDs), which can eliminate or lessen the side effects of existing IUDs, have been developed in our laboratory. As a novel type of copper-containing IUDs, it is not clear whether the mechanical properties of the Cu/LDPE composite IUDs can meet the need of clinical use or not. Therefore, the mechanical properties of the Cu/LDPE composite IUDs have been studied in the present article. STUDY DESIGN: The influence of copper particle content and size on the mechanical properties of the Cu/LDPE composite IUDs was analyzed firstly to provide guidance for the material composition design of the Cu/LDPE composite IUDs, and then the BaSO(4)/LDPE composite, which has been applied as a framework of the existing copper-containing IUDs in clinical use for decades, has been used as reference to judge whether the mechanical properties of the Cu/LDPE composite IUDs can meet the need of clinical use or not. However, the mechanical properties of IUDs cannot be characterized directly. Therefore, the mechanical properties of both the Cu/LDPE composite IUDs and the framework of the existing copper-containing IUDs were investigated by means of tensile test using standard tensile samples, and the fracture surface morphology of the tensile samples was characterized by scanning electron microscopy (SEM). RESULTS: Both the elongation at break and the tensile strength decrease with increasing of copper particle content and increase with increasing of the copper particle size, while the elastic modulus shows an opposite tendency. The tensile strength and elastic modulus of both the Cu/LDPE microcomposite IUDs and the Cu/LDPE nanocomposite IUDs with 25 wt.% of copper particles are higher than those of existing copper-containing IUDs (TCu220C; its framework is made of the BaSO(4)/LDPE composite with 20 wt.% of BaSO(4)). CONCLUSIONS: The content and size of the copper particles have significant effect on the mechanical properties of Cu/LDPE composite IUDs. The mechanical properties of both the Cu/LDPE microcomposite IUDs and the Cu/LDPE nanocomposite IUDs with 25 wt.% of copper particles were superior to that of existing copper-containing IUDs, indicating that the novel Cu/LDPE composite IUDs can satisfy the requirement of mechanical properties in clinical application.[Abstract] [Full Text] [Related] [New Search]