These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of divalent and trivalent species generated in the chemical and electrochemical oxidation of a dimeric pincer complex of nickel.
    Author: Spasyuk DM, Gorelsky SI, van der Est A, Zargarian D.
    Journal: Inorg Chem; 2011 Mar 21; 50(6):2661-74. PubMed ID: 21322580.
    Abstract:
    The electrolytic and chemical oxidation of the dimeric pincer complex [κ(P),κ(C),κ(N),μ(N)-(2,6-(i-Pr(2)POC(6)H(3)CH(2)NBn)Ni](2) (1; Bn = CH(2)Ph) has been investigated by various analytic techniques. Cyclic voltammetry measurements have shown that 1 undergoes a quasi-reversible, one electron, Ni-based redox process (ΔE(0)(1/2) = -0.07 V vs Cp(2)Fe/[Cp(2)Fe](+)), and spectroelectrochemical measurements conducted on the product of the electrolytic oxidation, [1](+•), have shown multiple low-energy electronic transitions in the range of 10,000-15,000 cm(-1). Computational studies using Density Functional Theory (B3LYP) have corroborated the experimentally obtained structure of 1, provided the electronic structure description, and helped interpret the experimentally obtained absorption spectra for 1 and [1](+·). These calculations indicate that the radical cation [1](+·) is a dimeric, mixed-valent species (class III) wherein most of the spin density is delocalized over the two nickel centers (Ni(+2.5)(2)N(2)), but some spin density is also present over the two nitrogen atoms (Ni(2+)(2)N(2)·). Examination of alternative structures for open shell species generated from 1 has shown that the spin density distribution is highly sensitive toward changes in the ligand environment of the Ni ions. NMR, UV-vis, electron paramagnetic resonance (EPR), and single crystal X-ray diffraction analyses have shown that chemical oxidation of 1 with N-Bromosuccinimide (NBS) follows a complex process that gives multiple products, including the monomeric trivalent species κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH═NBn)}NiBr(2) (2). These studies also indicate that oxidation of 1 with 1 equiv of NBS gives an unstable, paramagnetic intermediate that decomposes to a number of divalent species, including succinimide and the monomeric divalent complexes κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH═NBn)}NiBr (3) and κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH(2)N(H)Bn)}NiBr(2) (4); a second equivalent of NBS then oxidizes 3 and 4 to 2 and other unidentified products. The divalent complex 3 was synthesized independently and shown to react with NBS or bromine to form its trivalent homologue 2. The new complexes 2 and 3 have been characterized fully.
    [Abstract] [Full Text] [Related] [New Search]