These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular characterization of Xenopus lamin LIV reveals differences in the lamin composition of sperms in amphibians and mammals. Author: von Moeller F, Barendziak T, Apte K, Goldberg MW, Stick R. Journal: Nucleus; 2010; 1(1):85-95. PubMed ID: 21327107. Abstract: Lamins are nuclear intermediate filament proteins. They are involved in most nuclear activities and are essential for retaining the mechano-elastic properties of the nucleus. Somatic cells of vertebrates express lamins A, B1 and B2 while lamin LIII, a major component of the amphibian oocyte lamina is absent in mammals. The organization of the lamina of germ cells differs significantly from that of somatic cells. Mammalian spermatogenic cells express two short lamins, C2 and B3, that are splice isoforms of lamin A and B2, respectively. Here we identify the previously described Xenopus lamin LIV as splice variant of the lamin LIII gene. LIV contains 40 extra residues in coil 2A of the rod domain, which results in altered assembly properties. Xenopus lamin LIV and mammalian B3 assemble into short structures rather than into long IF-like filaments. Expression of lamin LIV is restricted to male germ cells suggesting that it might be the functional equivalent of mammalian lamin B3. We provide evidence that lamins C2 and B3 are restricted to the mammalian lineage and describe the lamin composition of Xenopus sperm. Our results show that the evolution of germ cell-specific lamins followed separate and distinctly different paths in amphibians and mammals.[Abstract] [Full Text] [Related] [New Search]