These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hepatic MR imaging for in vivo differentiation of steatosis, iron deposition and combined storage disorder: single-ratio in/opposed phase analysis vs. dual-ratio Dixon discrimination.
    Author: Bashir MR, Merkle EM, Smith AD, Boll DT.
    Journal: Eur J Radiol; 2012 Feb; 81(2):e101-9. PubMed ID: 21330083.
    Abstract:
    OBJECTIVE: To assess whether in vivo dual-ratio Dixon discrimination can improve detection of diffuse liver disease, specifically steatosis, iron deposition and combined disease over traditional single-ratio in/opposed phase analysis. METHODS: Seventy-one patients with biopsy-proven (17.7 ± 17.0 days) hepatic steatosis (n = 16), iron deposition (n = 11), combined deposition (n = 3) and neither disease (n = 41) underwent MR examinations. Dual-echo in/opposed-phase MR with Dixon water/fat reconstructions were acquired. Analysis consisted of: (a) single-ratio hepatic region-of-interest (ROI)-based assessment of in/opposed ratios; (b) dual-ratio hepatic ROI assessment of in/opposed and fat/water ratios; (c) computer-aided dual-ratio assessment evaluating all hepatic voxels. Disease-specific thresholds were determined; statistical analyses assessed disease-dependent voxel ratios, based on single-ratio (a) and dual-ratio (b and c) techniques. RESULTS: Single-ratio discrimination succeeded in identifying iron deposition (I/O(Ironthreshold)<0.88) and steatosis (I/O(Fatthreshold>1.15)) from normal parenchyma, sensitivity 70.0%; it failed to detect combined disease. Dual-ratio discrimination succeeded in identifying abnormal hepatic parenchyma (F/W(Normalthreshold)>0.05), sensitivity 96.7%; logarithmic functions for iron deposition (I/O(Irondiscriminator)<e((0.01-F/W(Iron))/0.48)) and for steatosis (I/O(Fatdiscriminator)>e((F/W(Fat)-0.01)/0.48)) differentiated combined from isolated diseases, sensitivity 100.0%; computer-aided dual-ratio analysis was comparably sensitive but less specific, 90.2% vs. 97.6%. CONCLUSION: MR two-point-Dixon imaging using dual-ratio post-processing based on in/opposed and fat/water ratios improved in vivo detection of hepatic steatosis, iron deposition, and combined storage disease beyond traditional in/opposed analysis.
    [Abstract] [Full Text] [Related] [New Search]