These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rim1 modulates direct G-protein regulation of Ca(v)2.2 channels.
    Author: Weiss N, Sandoval A, Kyonaka S, Felix R, Mori Y, De Waard M.
    Journal: Pflugers Arch; 2011 Apr; 461(4):447-59. PubMed ID: 21331761.
    Abstract:
    Regulation of presynaptic voltage-gated calcium channels is critical for depolarization-evoked neurotransmitter release. Various studies attempted to determine the functional implication of Rim1, a component of the vesicle release machinery. Besides to couple voltage-gated Ca(2+) channels to the presynaptic vesicle release machinery, it was evidenced that Rim1 also prevents voltage-dependent inactivation of the channels through a direct interaction with the ancillary β-subunits, thus facilitating neurotransmitter release. However, facilitation of synaptic activity may also be caused by a reduction of the inhibitory pathway carried by G-protein-coupled receptors. Here, we explored the functional implication of Rim1 in G-protein regulation of Ca(v)2.2 channels. Activation of μ-opioid receptors expressed in HEK-293 cells along with Ca(v)2.2 channels produced a drastic current inhibition both in control and Rim1-expressing cells. In contrast, Rim1 considerably promoted the extent of current deinhibition following channel activation, favoring sustained Ca(2+) influx under prolonged activity. Our data suggest that Rim1-induced facilitation of neurotransmitter release may come as a consequence of a decrease in the inhibitory pathway carried by G-proteins that contributes, together with the slowing of channel inactivation, to maintain Ca(2+) influx under prolonged activity. The present study also furthers functional insights in the importance of proteins from the presynaptic vesicle complex in the regulation of voltage-gated Ca(2+) channels by G-proteins.
    [Abstract] [Full Text] [Related] [New Search]