These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chronic exposure to manganese decreases striatal dopamine turnover in human alpha-synuclein transgenic mice.
    Author: Peneder TM, Scholze P, Berger ML, Reither H, Heinze G, Bertl J, Bauer J, Richfield EK, Hornykiewicz O, Pifl C.
    Journal: Neuroscience; 2011 Apr 28; 180():280-92. PubMed ID: 21333719.
    Abstract:
    Interaction of genetic and environmental factors is likely involved in Parkinson's disease (PD). Mutations and multiplications of alpha-synuclein (α-syn) cause familial PD, and chronic manganese (Mn) exposure can produce an encephalopathy with signs of parkinsonism. We exposed male transgenic C57BL/6J mice expressing human α-syn or the A53T/A30P doubly mutated human α-syn under the tyrosine hydroxylase promoter and non-transgenic littermates to MnCl₂-enriched (1%) or control food, starting at the age of 4 months. Locomotor activity was increased by Mn without significant effect of the transgenes. Mice were sacrificed at the age of 7 or 20 months. Striatal Mn was significantly increased about three-fold in those exposed to MnCl₂. The number of tyrosine hydroxylase positive substantia nigra compacta neurons was significantly reduced in 20 months old mice (-10%), but Mn or transgenes were ineffective (three-way ANOVA with the factors gene, Mn and age). In 7 months old mice, striatal homovanillic acid (HVA)/dopamine (DA) ratios and aspartate levels were significantly increased in control mice with human α-syn as compared to non-transgenic controls (+17 and +11%, respectively); after Mn exposure both parameters were significantly reduced (-16 and -13%, respectively) in human α-syn mice, but unchanged in non-transgenic animals and mice with mutated α-syn (two-way ANOVA with factors gene and Mn). None of the parameters were changed in the 20 months old mice. Single HVA/DA ratios and single aspartate levels significantly correlated across all treatment groups suggesting a causal relationship between the rate of striatal DA metabolism and aspartate release. In conclusion, under our experimental conditions, Mn and human α-syn, wild-type and doubly mutated, did not interact to induce PD-like neurodegenerative changes. However, Mn significantly and selectively interacted with human wild-type α-syn on indices of striatal DA neurotransmission, the neurotransmitter most relevant to PD.
    [Abstract] [Full Text] [Related] [New Search]