These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from soybean oil. Author: Park DH, Kim BS. Journal: N Biotechnol; 2011 Oct; 28(6):719-24. PubMed ID: 21333767. Abstract: High-yield production of polyhydroxyalkanoates (PHAs) by Ralstonia eutropha KCTC 2662 was investigated using soybean oil and γ-butyrolactone as carbon sources. In flask culture, it was shown that R. eutropha KCTC 2662 accumulated PHAs during the growth phase. The optimum carbon to nitrogen ratio (C/N ratio) giving the highest cell and PHA yield was 20 g-soybean oil/g-(NH(4))(2)SO(4). The 4-hydroxybutyrate (4HB) fraction in the copolymer was not strongly affected by the C/N ratio. In a 2.5-L fermentor, a homopolymer of poly(3-hydroxybutyrate) [P(3HB)] was produced from soybean oil as the sole carbon source by batch and fed-batch cultures of R. eutropha with dry cell weights of 15-32 g/L, PHA contents of 78-83 wt% and yields of 0.80-0.82 g-PHA/g-soybean oil used. By co-feeding soybean oil and γ-butyrolactone as carbon sources, a copolymer of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] could be produced with dry cell weights of 10-21 g/L, yields of 0.45-0.56 g-PHA/g-soybean oil used (0.39-0.50g-PHA/g-carbon sources used) and 4HB fractions of 6-10 mol%. Higher supplementation of γ-butyrolactone increased the 4HB fraction in the copolymer, but decreased cell and PHA yield.[Abstract] [Full Text] [Related] [New Search]