These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Orderly inactivation of the key checkpoint protein mitotic arrest deficient 2 (MAD2) during mitotic progression.
    Author: Ma HT, Poon RY.
    Journal: J Biol Chem; 2011 Apr 15; 286(15):13052-9. PubMed ID: 21335556.
    Abstract:
    Anaphase is promoted by the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) only when all the chromosomes have achieved bipolar attachment to the mitotic spindles. Unattached kinetochores or the absence of tension between the paired kinetochores activates a surveillance mechanism termed the spindle-assembly checkpoint. A fundamental principle of the checkpoint is the activation of mitotic arrest deficient 2 (MAD2). MAD2 then forms a diffusible complex called mitotic checkpoint complex (designated as MAD2(MCC)) before it is recruited to APC/C (designated as MAD2(APC/C)). Large gaps in our knowledge remain on how MAD2 is inactivated after the checkpoint is satisfied. In this study, we have investigated the regulation of MAD2-containing complexes during mitotic progression. Using selective immunoprecipitation of checkpoint components and gel filtration chromatography, we found that MAD2(MCC) and MAD2(APC/C) were regulated very differently during mitotic exit. Temporally, MAD2(MCC) was broken down ahead of MAD2(APC/C). The inactivation of the two complexes also displayed different requirements of proteolysis; although APC/C and proteasome activities were dispensable for MAD2(MCC) inactivation, they are required for MAD2(APC/C) inactivation. In fact, the degradation of CDC20 is inextricably linked to the breakdown of MAD2(APC/C). These data extended our understanding of the checkpoint complexes during checkpoint silencing.
    [Abstract] [Full Text] [Related] [New Search]