These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of [6]-gingerol metabolism in rat by liquid chromatography electrospray tandem mass spectrometry.
    Author: Gauthier ML, Douat J, Vachon P, Beaudry F.
    Journal: Biomed Chromatogr; 2011 Oct; 25(10):1150-8. PubMed ID: 21337351.
    Abstract:
    [6]-Gingerol is a structural analog of capsaicin, an agonist of the transient receptor potential channel vanilloid 1, which is known to have therapeutic properties for the treatment of pain and inflammation. A selective and sensitive quantitative method for the determination of [6]-gingerol by HPLC-ESI/MS/MS was developed. The method consisted of a protein precipitation extraction followed by analysis using liquid chromatography electrospray tandem mass spectrometry. The chromatographic separation was achieved using a Thermo 100 × 2.1 mm C(8) column combined with an isocratic mobile phase composed of acetonitrile, water and formic acid (80:20:0.1) at a flow rate of 250 μL/min. The mass spectrometer was operating in SRM mode and an analytical range set at 20-5000 ng/mL was used to construct a calibration curve in rat plasma. The interbatch precision (%CV) and accuracy (%NOM) observed were 2.9-10.8% and 98.1-102.1% in rat plasma. Similarly, precision and accuracy in rat liver microsomal suspension were also evaluated at nominal concentrations of 1, 25 and 100 μm; the precision (%CV) was <3.4% and the accuracy (%NOM) observed ranged from 89.7 to 109.4%. An in vitro metabolic stability study using rat liver microsomes was performed to determine intrinsic clearance of [6]-gingerol. The results show slow degradation with a T(1/2) of 163 min and relatively low intrinsic clearance suggesting that phase I metabolism may not be a major contributor of the drug clearance. Further analyses were performed to characterize in vitro and in vivo metabolites. Three main phase I metabolites and four phase II metabolites were identified by HPLC-MS/MS and HPLC-MSD TOF. However, the results suggest that glucuronidation of hydroxylated [6]-gingerol is the primary metabolite excreted in rat urine.
    [Abstract] [Full Text] [Related] [New Search]