These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficient tumor regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin.
    Author: Tagami T, Ernsting MJ, Li SD.
    Journal: J Control Release; 2011 Jun 10; 152(2):303-9. PubMed ID: 21338635.
    Abstract:
    We have developed a novel and simplified thermosensitive liposomal formulation (HaT: Hyperthermia-activated cytoToxic) composed of DPPC lipid and Brij78 (96:4, molar ratio). The HaT nanoparticles were loaded with doxorubicin (DOX) with >95% efficiency when a pH gradient method and a drug/lipid ratio of 1/20 (w/w) were applied. Drug release from the HaT formulation was significantly faster at 40-41°C (100% release in 2-3min) with 3.4-fold increased membrane permeability compared to the LTSL (lyso-lipid temperature sensitive liposomes; DPPC: MSPC: DSPE-PEG(2000)=86:10:4, molar ratio), a formulation that is currently in clinical trials. Both formulations displayed similar stability at 37°C in serum (10-20% release in 30min), which corresponds to their comparable pharmacokinetics in the unheated mice. An approximately 1.4-fold increased drug delivery to the locally heated tumor (~43°C) was detected with HaT-DOX compared to LTSL-DOX. Moreover, when compared with free DOX, HaT enhanced drug uptake in the heated tumor by 5.2-fold and reduced drug delivery to the heart by 15-fold. A single i.v. treatment with HaT-DOX at 3mg DOX/kg in combination with localized hyperthermia demonstrated enhanced tumor regression compared to LTSL-DOX and free DOX, and exhibited little toxicity.
    [Abstract] [Full Text] [Related] [New Search]