These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acclimation- and mutation-induced enhancement of PsbS levels affects the kinetics of non-photochemical quenching in Arabidopsis thaliana. Author: Zia A, Johnson MP, Ruban AV. Journal: Planta; 2011 Jun; 233(6):1253-64. PubMed ID: 21340700. Abstract: The efficiency of photosystem II antenna complexes (LHCs) in higher plants must be regulated to avoid potentially damaging overexcitation of the reaction centre in excess light. Regulation is achieved via a feedback mechanism known as non-photochemical quenching (NPQ), triggered the proton gradient (ΔpH) causing heat dissipation within the LHC antenna. ΔpH causes protonation of the LHCs, the PsbS protein and triggers the enzymatic de-epoxidation of the xanthophyll, violaxanthin, to zeaxanthin. A key step in understanding the mechanism is to decipher whether PsbS and zeaxanthin cooperate to promote NPQ. To obtain clues about their respective functions we studied the effects of PsbS and zeaxanthin on the rates of NPQ formation and relaxation in wild-type Arabidopsis leaves and those overexpressing PsbS (L17) or lacking zeaxanthin (npq1). Overexpression of PsbS was found to increase the rate of NPQ formation, as previously reported for zeaxanthin. However, PsbS overexpression also increased the rate of NPQ relaxation, unlike zeaxanthin, which is known decrease the rate. The enhancement of PsbS levels in plants lacking zeaxanthin (npq1) by either acclimation to high light or crossing with L17 plants showed that the effect of PsbS was independent of zeaxanthin. PsbS levels also affected the kinetics of the 535 nm absorption change (ΔA535), which monitors the formation of the conformational state of the LHC antenna associated with NPQ, in an identical way. The antagonistic action of PsbS and zeaxanthin with respect to NPQ and ΔA535 relaxation kinetics suggests that the two molecules have distinct regulatory functions.[Abstract] [Full Text] [Related] [New Search]