These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DNA-glutathione adducts derived from vic-dihaloalkanes: mechanisms of mutagenesis. Author: Guengerich FP, Humphreys WG, Kim DH, Oida T, Cmarik JL. Journal: Princess Takamatsu Symp; 1990; 21():101-7. PubMed ID: 2134669. Abstract: The conjugation of the prototype dihaloalkane ethylene dibromide (EDB) with glutathione (GSH) yields S-(2-bromoethyl)GSH, which gives rise to S-[2-(N7-guanyl)ethyl]GSH as the major DNA adduct (greater than or equal to 95%). All reaction steps have SN2 character. Another minor DNA and RNA adduct is S-[2-(N1-adenyl)ethyl]GSH, formed in vitro and in vivo. These adducts have similar half-lives in vivo. Enhancement of GSH conjugation or inhibition of cytochrome P-450 IIE1 oxidation enhances DNA adduct levels in vivo and GSH depletion lowers levels. The mercapturic acid N-acetyl-S-[2-(N7-guanyl)ethyl]cysteine is excreted in urine and may find use as a biomarker. A series of compounds of the general structure RSCH2CH2Cl has been used to alkylate Salmonella typhimurium TA100. The ratio of (guanyl) base-pair mutations to N7-guanyl adducts varies dramatically, with S-(2-chloroethyl)GSH apparently producing the most potent guanyl adduct. This mutagenicity is not due to SOS response or alkylation specificity. Physical studies with modified oligonucleotides indicate that the N7-guanyl substitution weakens G-C pairing but does not in itself alter the selectivity of pairing to C in an isolated oligomer.[Abstract] [Full Text] [Related] [New Search]