These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: nodSU, two new nod genes of the broad host range Rhizobium strain NGR234 encode host-specific nodulation of the tropical tree Leucaena leucocephala. Author: Lewin A, Cervantes E, Chee-Hoong W, Broughton WJ. Journal: Mol Plant Microbe Interact; 1990; 3(5):317-26. PubMed ID: 2134856. Abstract: Rhizobium species strain NGR234 nodulates at least 35 diverse genera of legumes as well as the nonlegume Parasponia andersonii. Most nodulation genes are located on the 500-kilobase pair symbiotic plasmid, pNGR234a. Previously, three plasmid-borne host range determinants (HsnI, HsnII, and HsnIII) were identified by their ability to extend the nodulation capacity of heterologous rhizobia to include Vigna unguiculata. In this study, we show that HsnII contains two new nod-box linked hsn genes, nodS and nodU.nodS controls nodulation of the tropical tree Leucaena leucocephala, while the nodSU genes regulate nodulation of the pasture legume Desmodium intortum and the grain legume V. unguiculata. Regulation of the nod-box upstream of nodSU by the flavonoid naringenin was shown using a fusion with a promoterless lacZ gene. Determination of the nucleotide sequence of the nodS gene did not reveal homology with any gene in the EMBL library, although Bradyrhizobium japonicum USDA110 contains both nodS and nodU (M. Göttfert, S. Hitz, and H. Hennecke, Molecular Plant-Microbe Interactions 3:308-316, 1990). We suggest that broad host range in NGR234 is controlled in part by a nodD gene which interacts with a wide range of flavonoids, and in part by host-specific nod genes such as nodS.[Abstract] [Full Text] [Related] [New Search]