These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Water-induced physical gelation of organic solvents by N-(n-alkylcarbamoyl)-L-alanine amphiphiles.
    Author: Pal A, Dey J.
    Journal: Langmuir; 2011 Apr 05; 27(7):3401-8. PubMed ID: 21351761.
    Abstract:
    A series of amino acid-based gelators N-(n-alkylcarbamoyl)-L-alanine were synthesized, and their gelation abilities in a series of organic solvents were tested. No gelation was observed in pure solvents employed. All the amphiphilic molecules were found to form stable organogels in the solvents in the presence of a small amount of water, methanol, or urea. The volume of solvent gelled by a given amount of the gelator was observed to depend upon the volume of added water. The gelation behavior of the amphiphiles in a given solvent containing a known volume of water was compared. The effects of chirality and substitution on the acid group on the gelation ability were examined. Although the corresponding N-(n-tetradecylcarbamoyl)-DL-alanine was found to form only weak organogel in pure solvents, the achiral amphiphilic compound N-(n-tetradecylcarbamoyl)-β-alanine, however, did not form gel in the absence of water. The methyl ester of N-(n-tetradecylcarbamoyl)-L-alanine was also observed to form gels in the same solvents, but only in the presence of water. The organogels were characterized by several techniques, including (1)H NMR, Fourier transform IR, X-ray diffraction, and field emission scanning electron microscopy. The thermal and rheological properties of the organogels were studied. The mechanical strength of the organogel formed by N-(n-tetradecylcarbamoyl)-DL-alanine was observed to increase upon the addition of water. It was concluded that water-mediated intermolecular hydrogen-bonding interaction between amphiphiles caused formation of supramolecular self-assemblies.
    [Abstract] [Full Text] [Related] [New Search]