These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Polymorphism in the DNA repair enzyme XRCC1: utility of current database and implications for human health risk assessment.
    Author: Ginsberg G, Angle K, Guyton K, Sonawane B.
    Journal: Mutat Res; 2011; 727(1-2):1-15. PubMed ID: 21352951.
    Abstract:
    Genetic polymorphisms are increasingly recognized as sources of variability not only in toxicokinetic but also in toxicodynamic response to environmental agents. XRCC1 is involved in base excision repair (BER) of DNA; it has variant genotypes that are associated with modified repair function. This analysis focuses on four polymorphisms: three in the coding region that affect protein structure and one in an upstream regulatory sequence that affects gene expression. The Arg399Gln variant is the most widely studied with evidence supporting a quantitative effect of genotype on phenotype. The homozygous variant (Gln/Gln) can have 3-4-fold diminished capacity to remove DNA adducts and oxidized DNA damage. This variant is relatively common in Caucasians and Asians where approximately 10% are homozygous variant. In contrast, the Arg194Trp variant appears to protect against genotoxic effects although the degree to which DNA repair is enhanced by this polymorphism is uncertain. The homozygous variant is rare in Caucasians and African Americans but it is present at 7% in Asians. A third coding region polymorphism at codon 280 appears to decrease repair function but additional quantitative information is needed and the homozygous variant is rare across populations studied. A polymorphism in an upstream promoter binding sequence (-77T>C) appears to lower XRCC1 levels by decreasing gene expression. Based upon genotype effect on phenotype and allele frequency, the current analysis finds that the codon 399 and upstream (-77) polymorphisms have the greatest potential to affect the toxicodynamic response to DNA damaging agents. However, the implications for risk assessment are limited by the likelihood that polymorphisms in multiple BER genes interact to modulate DNA repair.
    [Abstract] [Full Text] [Related] [New Search]