These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional characterization of a special thermophilic multifunctional amylase OPMA-N and its N-terminal domain. Author: Li F, Zhu X, Li Y, Cao H, Zhang Y. Journal: Acta Biochim Biophys Sin (Shanghai); 2011 Apr; 43(4):324-34. PubMed ID: 21355000. Abstract: A gene encoding a special thermophilic multifunctional amylase OPMA-N was cloned from Bacillus sp. ZW2531-1. OPMA-N has an additional 124-residue N-terminal domain compared with typical amylases and forms a relatively independent domain with a β-pleated sheet and random coil structure. Here we reported an unusual substrate and product specificities of OPMA-N and the impact of the additional N-terminal domain (1-124 aa) on the function and properties of OPMA-N. Both OPMA-N (12.82 U/mg) and its N-terminal domain-truncated ΔOPMA-N (12.55 U/mg) only degraded starch to produce oligosaccharides including maltose, maltotriose, isomaltotriose, and isomaltotetraose, but not to produce glucose. Therefore, the N-terminal domain did not determine its substrate and product specificities that were probably regulated by its C-terminal β-pleated sheet structure. However, the N-terminal domain of OPMA-N seemed to modulate its catalytic feature, leading to the production of more isomaltotriose and less maltose, and it seemed to contribute to OPMA-N's thermostability since OPMA-N showed higher activity than ΔOPMA-N in a temperature range from 40 to 80°C and the half-life (t(1/2)) was 5 h for OPMA-N and 2 h for ΔOPMA-N at 60°C. Both OPMA-N and ΔOPMA-N were Ca(2+)-independent, but their activities could be influenced by Cu(2+), Ni(2+), Zn(2+), EDTA, SDS (1 mM), or Triton-X100 (1%). Kinetic analysis and starch-adsorption assay indicated that the N-terminal domain of OPMA-N could increase the OPMA-N-starch binding and subsequently increase the catalytic efficiency of OPMA-N for starch. In particular, the N-terminal domain of OPMA-N did not determine its oligomerization, because both OPMA-N and ΔOPMA-N could exist in the forms of monomer, homodimer, and homooligomer at the same time.[Abstract] [Full Text] [Related] [New Search]