These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein-protein interactions occur between p53 phosphoforms and ATM and 53BP1 at sites of exogenous DNA damage. Author: Al Rashid ST, Harding SM, Law C, Coackley C, Bristow RG. Journal: Radiat Res; 2011 May; 175(5):588-98. PubMed ID: 21361779. Abstract: We have previously shown that the Ser15-phosphorylated p53 phosphoform, p53(Ser15), can localize at sites of ionizing radiation-induced DNA damage. In this study, we hypothesized that the non-specific DNA binding domain (NSDBD) of the p53 carboxy-terminus (C-terminus) mediates chromatin anchoring at sites of DNA damage to interact with two key mediators of the DNA damage response (DDR): ATM and 53BP1. Exogenous YFP-p53 fusion constructs expressing C-terminus deletion mutants of p53 were transfected into p53-null H1299 cells and tracked by microscopy and biochemistry to determine relative chromatin-binding pre- and postirradiation. We observed that exogenous YFP-p53(WT) and YFP-p53(Δ367-393) associated with ATM(Ser1981) and 53BP1 in the nuclear, chromatin-bound fractions after DNA damage. Of interest, YFP-p53(Δ1-299) fusion proteins, which lack transcriptional trans-activation and the Ser15-residue, bound to ATM(Ser1981) but not to 53BP1. In support of these data, we used subnuclear UV-microbeam and immunoprecipitation analyses of irradiated normal human fibroblasts (HDFs) that confirmed an interaction between endogenous p53 and ATM or 53BP1. Based on these observations, we propose a model whereby a pre-existing pool of p53 responds immediately to radiation-induced DNA damage using the C-terminus to spatially facilitate protein-protein interactions and the DDR at sites of DNA damage.[Abstract] [Full Text] [Related] [New Search]