These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Impact of a glycogen phosphorylase inhibitor and metformin on basal and glucagon-stimulated hepatic glucose flux in conscious dogs. Author: Torres TP, Sasaki N, Donahue EP, Lacy B, Printz RL, Cherrington AD, Treadway JL, Shiota M. Journal: J Pharmacol Exp Ther; 2011 Jun; 337(3):610-20. PubMed ID: 21363927. Abstract: The effects of a glycogen phosphorylase inhibitor (GPI) and metformin (MT) on hepatic glucose fluxes (μmol · kg(-1) · min(-1)) in the presence of basal and 4-fold basal levels of plasma glucagon were investigated in 18-h fasted conscious dogs. Compared with the vehicle treatment, GPI infusion suppressed net hepatic glucose output (NHGO) completely (-3.8 ± 1.3 versus 9.9 ± 2.8) despite increased glucose 6-phosphate (G-6-P) neogenesis from gluconeogenic precursors (8.1 ± 1.1 versus 5.5 ± 1.1). MT infusion did not alter those parameters. In response to a 4-fold rise in plasma glucagon levels, in the vehicle group, plasma glucose levels were increased 2-fold, and NHGO was increased (43.9 ± 5.7 at 10 min and 22.7 ± 3.4 at steady state) without altering G-6-P neogenesis (3.7 ± 1.5 and 5.5 ± 0.5, respectively). In the GPI group, there was no increase in NHGO due to decreased glucose-6-phosphatase flux associated with reduced G-6-P concentration. A lower G-6-P concentration was the result of increased net glycogenesis without altering G-6-P neogenesis. In the MT group, the increment in NHGO (22.2 ± 4.4 at 10 min and 12.1 ± 3.6 at steady state) was approximately half of that of the vehicle group. The lesser NHGO was associated with reduced glucose-6-phosphatase flux but a rise in G-6-P concentration and only a small incorporation of plasma glucose into glycogen. In conclusion, the inhibition of glycogen phosphorylase a activity decreases basal and glucagon-induced NHGO via redirecting glucose 6-phosphate flux from glucose toward glycogen, and MT decreases glucagon-induced NHGO by inhibiting glucose-6-phosphatase flux and thereby reducing glycogen breakdown.[Abstract] [Full Text] [Related] [New Search]