These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conformational stability from variable temperature infrared spectra of xenon solutions, r0 structural parameters, and ab initio calculations of cyclopropylisocyanate.
    Author: Durig JR, Zhou SX, Guirgis GA, Wurrey CJ.
    Journal: J Phys Chem A; 2011 Mar 24; 115(11):2297-307. PubMed ID: 21366209.
    Abstract:
    Infrared spectra (4000 to 400 cm(-1)) of the gas and variable temperature xenon solutions, and the Raman spectrum of the liquid have been recorded for cyclopropylisocyanate. The enthalpy difference has been determined to be 77 ± 8 cm(-1) (0.92 ± 0.10 kJ/mol) with the trans form more stable than the cis conformer with 59 ± 2% present at ambient temperature. By utilizing three rotational constants for each conformer, combined with structural parameters predicted from MP2(full)/6-311+G(d,p) calculations, the adjusted r(0) parameters have been obtained. Heavy atom structural parameters for the trans [cis] conformers are the following: distances (Å) (C-C(2,3)) = 1.509(3) [1.509(3)], (C(2)-C(3)) = 1.523(3) [1.521(3)], (C-N) = 1.412(3) [1.411(3)], (N═C) =1.214(3) [1.212(3)], (C═O) = 1.163(3) [1.164(3)]; angles (°) ∠CCN = 116.7(5) [120.1(5)], ∠CNC = 136.3(5) [137.6(5)]. The centrifugal distortion constants have been predicted from ab initio and DFT calculations and are compared to the experimentally determined values.
    [Abstract] [Full Text] [Related] [New Search]