These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thiol redox and phosphate transport in renal brush-border membrane. Effect of nicotinamide.
    Author: Suzuki M, Capparelli AW, Jo OD, Yanagawa N.
    Journal: Biochim Biophys Acta; 1990 Jan 15; 1021(1):85-90. PubMed ID: 2136797.
    Abstract:
    In the present study, the effect of thiol redox and its possible role in the inhibitory effect of nicotinamide on renal brush-border membrane (BBM) phosphate uptake was examined. Addition of thiol reducing agent, dithiothreitol (DTT, 5 mM), caused an increase, while addition of thiol oxidant, diamide (DM, 5 mM) caused a reversible decrease in sodium-dependent BBM phosphate uptake. Kinetic analyses revealed an increase in both Vmax and Km by DTT, and a decrease in Vmax by DM. These results suggest that thiol redox influences BBM phosphate uptake with sulfhydryl (SH) groups relate to its capacity and disulfide (SS) groups to its affinity for phosphate. Since changes in cytosolic NAD levels may affect BBM thiol redox through changes in redox states of NADP and glutathione systems, we have examined such possibility by studying the effect of nicotinamide (NM). Incubation of proximal tubules with NM (10 mM) induced an oxidative effect on redox states of cytosolic NAD, NADP systems as inferred from decreased cellular lactate/pyruvate, malate/pyruvate, respectively. Measurements of cytosolic glutathiones and BBM thiols also revealed that NM pretreatment shifted the cytosolic glutathione redox (GSH/GSSG) and BBM thiol redox (SH/SS) toward more oxidized state. On the other hand, incubation of proximal tubules with NM suppressed phosphate uptake by the subsequently isolated BBM vesicles. The lower phosphate uptake by NM-pretreated BBM vesicles was reversed by DTT and was resistant to the inhibitory effect of DM. These results thus suggest that BBM thiol oxidation may be involved in the inhibitory effect of NM on BBM phosphate uptake.
    [Abstract] [Full Text] [Related] [New Search]