These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Experimental study and constitutive modelling of the passive mechanical properties of the porcine carotid artery and its relation to histological analysis: Implications in animal cardiovascular device trials. Author: García A, Peña E, Laborda A, Lostalé F, De Gregorio MA, Doblaré M, Martínez MA. Journal: Med Eng Phys; 2011 Jul; 33(6):665-76. PubMed ID: 21371929. Abstract: The present study focusses on the determination, comparison and constitutive modelling of the passive mechanical properties of the swine carotid artery over very long stretches in both proximal and distal regions. Special attention is paid to the histological and mechanical variations of these properties depending on the proximity to the heart. The results can have clinical relevance, especially in the research field of intravascular device design. Before the final clinical trials on humans, research in the vascular area is conducted on animal models, swine being the most common due to the similarities between the human and swine cardiovascular systems as well as the fact that the swine size is suitable for testing devices, in this case endovascular carotid systems. The design of devices usually involves numerical techniques, and an important feature is the appropriate modelling of the mechanical properties of the vessel. Fourteen carotid swine arteries were harvested just after sacrifice and cyclic uniaxial tension tests in longitudinal and circumferential directions were performed for distal and proximal samples. The stress-stretch curves obtained were fitted with a hyperelastic anisotropic model. Stress-free configuration states were also analyzed. Finally, human and swine samples were processed in a histological laboratory and images were used to quantify their microconstituents. The statistical analysis revealed significant differences between the mechanical behavior of proximal and distal locations in the circumferential but not in the longitudinal direction. Circumferential direction samples show clear differences both in residual stretches and tensile curves between the two locations, while the features of longitudinal specimens are independent of the axial position. The statistical analysis provides significant evidence of changes depending on the position of the sample, mainly in elastin and SMC quantification.[Abstract] [Full Text] [Related] [New Search]