These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of solutes and matrix structure on water mobility in glycerol-agar-water gel systems: a nuclear magnetic resonance approach. Author: Huang Y, Davies E, Lillford P. Journal: J Agric Food Chem; 2011 Apr 27; 59(8):4078-87. PubMed ID: 21375332. Abstract: Nuclear magnetic resonance spectroscopy (NMR) has been widely used to determine water molecular mobility in food systems. This study aimed to examine the effects of matrix structure and solutes on the dynamics of water molecules in model mixed systems, glycerol-agar-water gels, using low- and high-resolution NMR. Simple models to explain water relaxation rates and self-diffusion coefficients in mixed systems were developed using the experimental values obtained for the individual binary systems (glycerol-water solutions and agar-water gels). The spin-lattice relaxation of mixed systems was influenced by interactions of both glycerol and agar with water, while the spin-spin relaxation of mixed systems was dominated by the interaction of agar with water. Water diffusion was influenced by not only molecular interactions between all components but also the gel matrix structure. These models are able to differentiate the effect of solutes from that of matrix structure on water molecular dynamics.[Abstract] [Full Text] [Related] [New Search]