These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel role of AMP-activated protein kinase signaling in cigarette smoke induction of IL-8 in human lung epithelial cells and lung inflammation in mice.
    Author: Tang GJ, Wang HY, Wang JY, Lee CC, Tseng HW, Wu YL, Shyue SK, Lee TS, Kou YR.
    Journal: Free Radic Biol Med; 2011 Jun 01; 50(11):1492-502. PubMed ID: 21376115.
    Abstract:
    Cigarette smoke (CS) increases chemokine production in lung epithelial cells (LECs), but the pathways involved are not completely understood. AMP-activated protein kinase (AMPK), a crucial regulator of energy homeostasis, may modulate inflammation. Here, we show that cigarette smoke extract sequentially activated NADPH oxidase; increased intracellular reactive oxygen species (ROS) level; activated AMPK, NF-κB, and STAT3; and induced interleukin 8 (IL-8) in human LECs. Inhibition of NADPH oxidase activation by apocynin or siRNA targeting p47(phox) (a subunit of NADPH oxidase) attenuated the increased intracellular ROS level, AMPK activation, and IL-8 induction. Removal of intracellular ROS by N-acetylcysteine reduced the AMPK activation and IL-8 induction. Prevention of AMPK activation by Compound C or AMPK siRNA lessened the activation of both NF-κB and STAT3 and the induction of IL-8. Abrogation of the activation of NF-κB and STAT3 by BAY11-7085 and AG490, respectively, attenuated the IL-8 induction. We additionally show that chronic CS exposure in mice promoted AMPK phosphorylation and expression of MIP-2α (an IL-8 homolog) in LECs and lungs, as well as lung inflammation, all of which were reduced by Compound C treatment. Thus, a novel NADPH oxidase-dependent, ROS-sensitive AMPK signaling is important for CS-induced IL-8 production in LECs and possibly lung inflammation.
    [Abstract] [Full Text] [Related] [New Search]