These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Changes in HPA reactivity and noradrenergic functions regulate spatial memory impairments at delayed time intervals following cerebral ischemia.
    Author: Milot MR, Plamondon H.
    Journal: Horm Behav; 2011 Apr; 59(4):594-604. PubMed ID: 21376725.
    Abstract:
    This study investigates the association of ischemia-induced spatial memory impairment to alterations of the HPA axis and noradrenergic activation post insult. Experiment 1 characterized the effects of 10 min forebrain ischemia on corticosterone (CORT) secretion following ischemia and in response to spatial memory assessment in the Barnes maze, as well as the impact of pre-ischemia treatment with the glucocorticoid inhibitor metyrapone (175 mg/kg; s.c.). The results showed that cerebral ischemia represents a significant physiological stressor that upregulated CORT secretion 1, 24 and 72 h post-ischemia but not at 7 days. In response to testing in the Barnes maze ischemic animals showed elevated CORT secretion simultaneously with spatial memory deficits. The single dose of metyrapone attenuated the ischemia-induced adrenocortical hyper-responsiveness and subsequent memory deficits despite not providing neuroprotection in the hippocampal CA1 pyramidal cells. To complement these findings, we examined whether norepinephrine which provides positive feedback to the HPA axis and is upregulated following brain ischemia could influence memory performance at delayed intervals after ischemia. Experiment 2 demonstrated that pre-testing administration of the alpha2-adrenoceptor agonist clonidine (.04 mg/kg, s.c.) attenuated ischemia-induced working memory impairments in a radial maze while opposite effects were obtained with the antagonist yohimbine (.3 mg/kg, s.c.). Post-testing administration of clonidine produced spatial reference memory impairments in ischemic rats. The findings from the current study demonstrate increased sensitization and responsiveness of systems regulating stress hormones at long intervals post ischemia. Importantly, we demonstrate that these effects contribute to post ischemic cognitive impairments which can be attenuated pharmacologically even in the presence of hippocampal degeneration at time of testing.
    [Abstract] [Full Text] [Related] [New Search]