These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multi-residue method for the analysis of synthetic surfactants and their degradation metabolites in aquatic systems by liquid chromatography-time-of-flight-mass spectrometry.
    Author: Lara-Martín PA, González-Mazo E, Brownawell BJ.
    Journal: J Chromatogr A; 2011 Jul 29; 1218(30):4799-807. PubMed ID: 21377683.
    Abstract:
    Synthetic surfactants are economically important chemicals, as they are widely used in household cleaning detergents, textiles, paints, polymers and personal care products. In this work we have developed a method capable of the isolation and analysis of the most widely used surfactants (linear alkylbenzene sulfonates, LAS, nonylphenol ethoxylates, NPEO, and alcohol ethoxylates, AEO) and their main degradation products (sulfophenyl carboxylic acids, SPC, nonylphenol ethoxycarboxylates, NPEC, and polyethylene glycols, PEG) in aqueous and solid environmental matrices. First, analytes were extracted by ultrasonic extraction from sediments and suspended solids using methanol at 50°C as solvent and 3 cycles (30 min per cycle). Clean-up and pre-concentration of the extracts and water samples were carried out by solid-phase extraction (SPE), using Oasis HLB cartridges. Recoveries were generally about 80% for most compounds. Identification and quantification of target compounds were performed by liquid chromatography-time-of-flight-mass spectrometry (LC-ToF-MS), which has been much less used in the field of environmental analysis than other MS techniques. Examples which illustrate the possible advantages of this technique for multi-analyte analysis of target and non-target contaminants in environmental samples are provided. Finally, the methodology developed here was validated by measuring the concentration of surfactants and their metabolites in selected marine sediment and seawater samples collected in Long Island Sound (NY), and in influent and effluent wastewater from Stony Brook treatment plant (NY). This paper presents some of the first data relative to the occurrence of PEG in the environment, especially in sediments where concentrations were generally higher (up to 1490 μg/kg) than those for other classes of targeted surfactants and their metabolites.
    [Abstract] [Full Text] [Related] [New Search]