These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NEM-sensitive ATPase activity in rat nephron: effect of metabolic acidosis and alkalosis.
    Author: Sabatini S, Laski ME, Kurtzman NA.
    Journal: Am J Physiol; 1990 Feb; 258(2 Pt 2):F297-304. PubMed ID: 2137983.
    Abstract:
    The present study was designed to quantitate the amount and to map the localization of N-ethylmaleimide (NEM)-sensitive adenosinetriphosphatase (ATPase) activity in microdissected segments of the rat nephron. After complete nephron mapping the effect of chronic metabolic acidosis and alkalosis on enzyme activity was determined. In control animals the highest enzyme activity was found in the early proximal convoluted tubule of juxtamedullary nephrons; superficial early proximal tubule as well as medullary and cortical thick ascending limbs and collecting ducts also contained substantial activity. Enzyme activity in the papillary collecting duct before entry into the ducts of Bellini was 329 +/- 93 pmol.mm-1.h-1 (n = 8); after entry, however, enzyme activity was approximately one-fourth that value (60 +/- 9 pmol.mm-1.h-1, n = 8, P less than 0.01). No NEM-sensitive ATPase activity was found in the thin limbs of the loop of Henle. Enzyme activity increased in both the medullary and cortical thick ascending limbs as well as in the cortical collecting tubule in response to NH4Cl-induced chronic metabolic acidosis; in the cortical collecting duct, metabolic acidosis increased maximum activity (Vmax) but did not change Michaelis-Menten constant (Km). In the proximal convoluted tubule, enzyme activity decreased with metabolic acidosis. Bicarbonate loading had no effect on enzyme activity except in the most distal portion of the collecting duct where it was stimulated. These results show that NEM-sensitive ATPase activity exists throughout much of the rat nephron. These data suggest that both the cortical collecting tubule and thick ascending limb are regulatory sites of distal urinary acidification during acid loading.
    [Abstract] [Full Text] [Related] [New Search]