These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of heating conditions on the glass transition parameters of amorphous sucrose produced by melt-quenching.
    Author: Lee JW, Thomas LC, Schmidt SJ.
    Journal: J Agric Food Chem; 2011 Apr 13; 59(7):3311-9. PubMed ID: 21381719.
    Abstract:
    This research investigates the effects of heating conditions used to produce amorphous sucrose on its glass transition (T(g)) parameters, because the loss of crystalline structure in sucrose is caused by the kinetic process of thermal decomposition. Amorphous sucrose samples were prepared by heating at three different scan rates (1, 10, and 25 °C/min) using a standard differential scanning calorimetry (SDSC) method and by holding at three different isothermal temperatures (120, 132, and 138 °C) using a quasi-isothermal modulated DSC (MDSC) method. In general, the quasi-isothermal MDSC method (lower temperatures for longer times) exhibited lower T(g) values, larger ΔC(p) values, and broader glass transition ranges (i.e., T(g end) minus T(g onset)) than the SDSC method (higher temperatures for shorter times), except at a heating rate of 1 °C/min, which exhibited the lowest T(g) values, the highest ΔC(p), and the broadest glass transition range. This research showed that, depending on the heating conditions employed, a different amount and variety of sucrose thermal decomposition components may be formed, giving rise to wide variation in the amorphous sucrose T(g) values. Thus, the variation observed in the literature T(g) values for amorphous sucrose produced by thermal methods is, in part, due to differences in the heating conditions employed.
    [Abstract] [Full Text] [Related] [New Search]