These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Proton-coupled electron-transfer processes in photosystem II probed by highly resolved g-anisotropy of redox-active tyrosine YZ.
    Author: Matsuoka H, Shen JR, Kawamori A, Nishiyama K, Ohba Y, Yamauchi S.
    Journal: J Am Chem Soc; 2011 Mar 30; 133(12):4655-60. PubMed ID: 21381752.
    Abstract:
    The oxidation of a redox-active tyrosine residue Y(Z) in photosystem II (PSII) is coupled with proton transfer to a hydrogen-bonded D1-His190 residue. Because of the apparent proximity of Y(Z) to the water-oxidizing complex and its redox activity, it is believed that Y(Z) plays a significant role in water oxidation in PSII. We investigated the g-anisotropy of the tyrosine radical Y(Z)(•) to provide insight into the mechanism of Y(Z)(•) proton-coupled electron transfer in Mn-depleted PSII. The anisotropy was highly resolved by electron paramagnetic resonance spectroscopy at the W-band (94.9 GHz) using PSII single crystals. The g(X)-component along the phenolic C-O bond of Y(Z)(•) was calculated by density functional theory (DFT). It was concluded from the highly resolved g-anisotropy that Y(Z) loses a phenol proton to D1-His190 upon tyrosine oxidation, and D1-His190 redonates the same proton back to Y(Z)(•) upon reduction.
    [Abstract] [Full Text] [Related] [New Search]