These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electronic transport through a graphene-based ferromagnetic/normal/ferromagnetic junction. Author: Chen JC, Cheng SG, Shen SQ, Sun QF. Journal: J Phys Condens Matter; 2010 Jan 27; 22(3):035301. PubMed ID: 21386283. Abstract: Electronic transport in a graphene-based ferromagnetic/normal/ferromagnetic junction is investigated by means of the Landauer-Büttiker formalism and the nonequilibrium Green function technique. For the zigzag edge case, the results show that the conductance is always larger than e(2)/h for the parallel configuration of lead magnetizations, but for the antiparallel configuration the conductance becomes zero because of the band-selective rule. Therefore, a magnetoresistance (MR) plateau emerges with the value 100% when the Fermi energy is located around the Dirac point. In addition, choosing narrower graphene ribbons can yield wider 100% MR plateaus and the length change of the central graphene region does not affect the 100% MR plateaus. Although the disorder will reduce the MR plateau, the plateau value can still be kept about 50% even in a large disorder strength case. In addition, when the magnetizations of the left and right leads have a relative angle, the conductance changes as a cosine function of the angle. What is more, for the armchair edge case, the MR is usually small. So, it is more favorable to fabricate a graphene-based spin valve device by using a zigzag edge graphene ribbon.[Abstract] [Full Text] [Related] [New Search]