These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Probing atomic structure in magnetic core/shell nanoparticles using synchrotron radiation.
    Author: Baker SH, Roy M, Thornton SC, Qureshi M, Binns C.
    Journal: J Phys Condens Matter; 2010 Sep 29; 22(38):385301. PubMed ID: 21386550.
    Abstract:
    Core/shell Fe/Cu and Fe/Au nanoparticles were prepared directly by deposition from the gas phase. A detailed study of the atomic structure in both the cores and shells of the nanoparticles was undertaken by means of extended absorption fine structure (EXAFS) measurements. For Fe/Cu nanoparticles, a Cu shell ∼ 20 monolayers thick appears similar in structure to bulk Cu and is sufficient to cause the structure in the Fe core to switch from body centred cubic (bcc; as in bulk Fe) to face centred cubic. This is not the case for thinner Cu shells, 1-2 monolayers in thickness, in which there is a considerable contraction in nearest-neighbour interatomic distance as the shell structure changes to bcc. In Fe/Au nanoparticles, the crystal structure in the Fe core remains bcc for all Au thicknesses although there is some stretching of the lattice. In thin Au shells ∼ 2 monolayers thick, there is strong contraction in interatomic distances. There does not appear to be significant alloying at the Fe/Au interface.
    [Abstract] [Full Text] [Related] [New Search]