These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transcriptional regulation of the heat shock regulatory gene rpoH in Escherichia coli: involvement of a novel catabolite-sensitive promoter.
    Author: Nagai H, Yano R, Erickson JW, Yura T.
    Journal: J Bacteriol; 1990 May; 172(5):2710-5. PubMed ID: 2139650.
    Abstract:
    A catabolite-sensitive promoter was found to be involved in transcription of the heat shock regulatory gene rpoH encoding the sigma 32 protein. Expression of lacZ from the operon fusion, rpoHp-lacZ, was partially inhibited by glucose added to the broth medium. Dissection of the rpoH promoter region allowed us to localize the glucose-sensitive promoter to the 110-base-pair (bp) segment directly upstream of the rpoH coding region. Experiments on lacZ expression from the set of fusions in cya (adenylate cyclase) and crp (cyclic AMP [cAMP] receptor protein) mutants also supported the involvement of a catabolite-sensitive promoter. Analysis of rpoH mRNAs by S1 nuclease protection experiments led us to identify a novel promoter, designated P5, that is regulated by cAMP and the cAMP receptor protein. Studies of rpoH transcription in vitro demonstrated that RNA polymerase-sigma 70 can transcribe from the P5 promoter only in the presence of cAMP and its receptor protein. The 5' ends of P5 transcripts obtained in vivo and in vitro were found to be at 61 to 62 bp upstream of the initiation codon, and a putative binding sequence for the cAMP receptor protein was found at 38 to 39 bp further upstream. Transcription from the P5 promoter is increased by the addition of ethanol to the growth medium; however, the increase is greater in the presence of glucose than in its absence. These results add a new dimension to the transcriptional control of rpoH and to the regulation of the heat shock response in Escherichia coli.
    [Abstract] [Full Text] [Related] [New Search]